File Kurganov.cu
FileList > src > Kurganov.cu
Go to the source code of this file
#include "Kurganov.h"
Public Functions
Type | Name |
---|---|
__host__ void | AddSlopeSourceXCPU (Param XParam, BlockP< T > XBlock, EvolvingP< T > XEv, GradientsP< T > XGrad, FluxP< T > XFlux, T * zb) Host function for adding topographic slope source terms in X direction. |
template __host__ void | AddSlopeSourceXCPU< double > (Param XParam, BlockP< double > XBlock, EvolvingP< double > XEv, GradientsP< double > XGrad, FluxP< double > XFlux, double * zb) |
template __host__ void | AddSlopeSourceXCPU< float > (Param XParam, BlockP< float > XBlock, EvolvingP< float > XEv, GradientsP< float > XGrad, FluxP< float > XFlux, float * zb) |
__global__ void | AddSlopeSourceXGPU (Param XParam, BlockP< T > XBlock, EvolvingP< T > XEv, GradientsP< T > XGrad, FluxP< T > XFlux, T * zb) CUDA kernel for adding topographic slope source terms in X direction. |
template __global__ void | AddSlopeSourceXGPU< double > (Param XParam, BlockP< double > XBlock, EvolvingP< double > XEv, GradientsP< double > XGrad, FluxP< double > XFlux, double * zb) |
template __global__ void | AddSlopeSourceXGPU< float > (Param XParam, BlockP< float > XBlock, EvolvingP< float > XEv, GradientsP< float > XGrad, FluxP< float > XFlux, float * zb) |
__host__ void | AddSlopeSourceYCPU (Param XParam, BlockP< T > XBlock, EvolvingP< T > XEv, GradientsP< T > XGrad, FluxP< T > XFlux, T * zb) Host function for adding topographic slope source terms in Y direction. |
template __host__ void | AddSlopeSourceYCPU< double > (Param XParam, BlockP< double > XBlock, EvolvingP< double > XEv, GradientsP< double > XGrad, FluxP< double > XFlux, double * zb) |
template __host__ void | AddSlopeSourceYCPU< float > (Param XParam, BlockP< float > XBlock, EvolvingP< float > XEv, GradientsP< float > XGrad, FluxP< float > XFlux, float * zb) |
__global__ void | AddSlopeSourceYGPU (Param XParam, BlockP< T > XBlock, EvolvingP< T > XEv, GradientsP< T > XGrad, FluxP< T > XFlux, T * zb) CUDA kernel for adding topographic slope source terms in Y direction. |
template __global__ void | AddSlopeSourceYGPU< double > (Param XParam, BlockP< double > XBlock, EvolvingP< double > XEv, GradientsP< double > XGrad, FluxP< double > XFlux, double * zb) |
template __global__ void | AddSlopeSourceYGPU< float > (Param XParam, BlockP< float > XBlock, EvolvingP< float > XEv, GradientsP< float > XGrad, FluxP< float > XFlux, float * zb) |
__host__ __device__ T | KurgSolver (T g, T delta, T epsi, T CFL, T cm, T fm, T hp, T hm, T up, T um, T & fh, T & fu) Kurganov-Petrova approximate Riemann solver for fluxes and time step. |
__host__ void | updateKurgXATMCPU (Param XParam, BlockP< T > XBlock, EvolvingP< T > XEv, GradientsP< T > XGrad, FluxP< T > XFlux, T * dtmax, T * zb, T * Patm, T * dPdx) Host function for updating X-direction fluxes with atmospheric pressure effects. |
template __host__ void | updateKurgXATMCPU< double > (Param XParam, BlockP< double > XBlock, EvolvingP< double > XEv, GradientsP< double > XGrad, FluxP< double > XFlux, double * dtmax, double * zb, double * Patm, double * dPdx) |
template __host__ void | updateKurgXATMCPU< float > (Param XParam, BlockP< float > XBlock, EvolvingP< float > XEv, GradientsP< float > XGrad, FluxP< float > XFlux, float * dtmax, float * zb, float * Patm, float * dPdx) |
__global__ void | updateKurgXATMGPU (Param XParam, BlockP< T > XBlock, EvolvingP< T > XEv, GradientsP< T > XGrad, FluxP< T > XFlux, T * dtmax, T * zb, T * Patm, T * dPdx) CUDA kernel for updating X-direction fluxes with atmospheric pressure effects. |
template __global__ void | updateKurgXATMGPU< double > (Param XParam, BlockP< double > XBlock, EvolvingP< double > XEv, GradientsP< double > XGrad, FluxP< double > XFlux, double * dtmax, double * zb, double * Patm, double * dPdx) |
template __global__ void | updateKurgXATMGPU< float > (Param XParam, BlockP< float > XBlock, EvolvingP< float > XEv, GradientsP< float > XGrad, FluxP< float > XFlux, float * dtmax, float * zb, float * Patm, float * dPdx) |
__host__ void | updateKurgXCPU (Param XParam, BlockP< T > XBlock, EvolvingP< T > XEv, GradientsP< T > XGrad, FluxP< T > XFlux, T * dtmax, T * zb) Host function for updating X-direction fluxes using the Kurganov scheme. |
template __host__ void | updateKurgXCPU< double > (Param XParam, BlockP< double > XBlock, EvolvingP< double > XEv, GradientsP< double > XGrad, FluxP< double > XFlux, double * dtmax, double * zb) |
template __host__ void | updateKurgXCPU< float > (Param XParam, BlockP< float > XBlock, EvolvingP< float > XEv, GradientsP< float > XGrad, FluxP< float > XFlux, float * dtmax, float * zb) |
__global__ void | updateKurgXGPU (Param XParam, BlockP< T > XBlock, EvolvingP< T > XEv, GradientsP< T > XGrad, FluxP< T > XFlux, T * dtmax, T * zb) CUDA kernel for updating X-direction fluxes using the Kurganov scheme. |
template __global__ void | updateKurgXGPU< double > (Param XParam, BlockP< double > XBlock, EvolvingP< double > XEv, GradientsP< double > XGrad, FluxP< double > XFlux, double * dtmax, double * zb) |
template __global__ void | updateKurgXGPU< float > (Param XParam, BlockP< float > XBlock, EvolvingP< float > XEv, GradientsP< float > XGrad, FluxP< float > XFlux, float * dtmax, float * zb) |
__host__ void | updateKurgYATMCPU (Param XParam, BlockP< T > XBlock, EvolvingP< T > XEv, GradientsP< T > XGrad, FluxP< T > XFlux, T * dtmax, T * zb, T * Patm, T * dPdy) Host function for updating Y-direction fluxes with atmospheric pressure effects. |
template __host__ void | updateKurgYATMCPU< double > (Param XParam, BlockP< double > XBlock, EvolvingP< double > XEv, GradientsP< double > XGrad, FluxP< double > XFlux, double * dtmax, double * zb, double * Patm, double * dPdy) |
template __host__ void | updateKurgYATMCPU< float > (Param XParam, BlockP< float > XBlock, EvolvingP< float > XEv, GradientsP< float > XGrad, FluxP< float > XFlux, float * dtmax, float * zb, float * Patm, float * dPdy) |
__global__ void | updateKurgYATMGPU (Param XParam, BlockP< T > XBlock, EvolvingP< T > XEv, GradientsP< T > XGrad, FluxP< T > XFlux, T * dtmax, T * zb, T * Patm, T * dPdy) CUDA kernel for updating Y-direction fluxes with atmospheric pressure effects. |
template __global__ void | updateKurgYATMGPU< double > (Param XParam, BlockP< double > XBlock, EvolvingP< double > XEv, GradientsP< double > XGrad, FluxP< double > XFlux, double * dtmax, double * zb, double * Patm, double * dPdy) |
template __global__ void | updateKurgYATMGPU< float > (Param XParam, BlockP< float > XBlock, EvolvingP< float > XEv, GradientsP< float > XGrad, FluxP< float > XFlux, float * dtmax, float * zb, float * Patm, float * dPdy) |
__host__ void | updateKurgYCPU (Param XParam, BlockP< T > XBlock, EvolvingP< T > XEv, GradientsP< T > XGrad, FluxP< T > XFlux, T * dtmax, T * zb) Host function for updating Y-direction fluxes using the Kurganov scheme. |
template __host__ void | updateKurgYCPU< double > (Param XParam, BlockP< double > XBlock, EvolvingP< double > XEv, GradientsP< double > XGrad, FluxP< double > XFlux, double * dtmax, double * zb) |
template __host__ void | updateKurgYCPU< float > (Param XParam, BlockP< float > XBlock, EvolvingP< float > XEv, GradientsP< float > XGrad, FluxP< float > XFlux, float * dtmax, float * zb) |
__global__ void | updateKurgYGPU (Param XParam, BlockP< T > XBlock, EvolvingP< T > XEv, GradientsP< T > XGrad, FluxP< T > XFlux, T * dtmax, T * zb) CUDA kernel for updating Y-direction fluxes using the Kurganov scheme. |
template __global__ void | updateKurgYGPU< double > (Param XParam, BlockP< double > XBlock, EvolvingP< double > XEv, GradientsP< double > XGrad, FluxP< double > XFlux, double * dtmax, double * zb) |
template __global__ void | updateKurgYGPU< float > (Param XParam, BlockP< float > XBlock, EvolvingP< float > XEv, GradientsP< float > XGrad, FluxP< float > XFlux, float * dtmax, float * zb) |
Public Functions Documentation
function AddSlopeSourceXCPU
Host function for adding topographic slope source terms in X direction.
template<class T>
__host__ void AddSlopeSourceXCPU (
Param XParam,
BlockP < T > XBlock,
EvolvingP < T > XEv,
GradientsP < T > XGrad,
FluxP < T > XFlux,
T * zb
)
Updates fluxes with slope source terms for well-balanced solutions on CPU (based on kurganov and Petrova 2007).
Template parameters:
T
Data type
Parameters:
XParam
Simulation parametersXBlock
Block parametersXEv
Evolving variablesXGrad
GradientsXFlux
Fluxeszb
Bathymetry array
function AddSlopeSourceXCPU< double >
template __host__ void AddSlopeSourceXCPU< double > (
Param XParam,
BlockP < double > XBlock,
EvolvingP < double > XEv,
GradientsP < double > XGrad,
FluxP < double > XFlux,
double * zb
)
function AddSlopeSourceXCPU< float >
template __host__ void AddSlopeSourceXCPU< float > (
Param XParam,
BlockP < float > XBlock,
EvolvingP < float > XEv,
GradientsP < float > XGrad,
FluxP < float > XFlux,
float * zb
)
function AddSlopeSourceXGPU
CUDA kernel for adding topographic slope source terms in X direction.
template<class T>
__global__ void AddSlopeSourceXGPU (
Param XParam,
BlockP < T > XBlock,
EvolvingP < T > XEv,
GradientsP < T > XGrad,
FluxP < T > XFlux,
T * zb
)
Updates fluxes with slope source terms for well-balanced solutions (based on Kurganov and Petrova 2007).
Template parameters:
T
Data type
Parameters:
XParam
Simulation parametersXBlock
Block parametersXEv
Evolving variablesXGrad
GradientsXFlux
Fluxeszb
Bathymetry array
function AddSlopeSourceXGPU< double >
template __global__ void AddSlopeSourceXGPU< double > (
Param XParam,
BlockP < double > XBlock,
EvolvingP < double > XEv,
GradientsP < double > XGrad,
FluxP < double > XFlux,
double * zb
)
function AddSlopeSourceXGPU< float >
template __global__ void AddSlopeSourceXGPU< float > (
Param XParam,
BlockP < float > XBlock,
EvolvingP < float > XEv,
GradientsP < float > XGrad,
FluxP < float > XFlux,
float * zb
)
function AddSlopeSourceYCPU
Host function for adding topographic slope source terms in Y direction.
template<class T>
__host__ void AddSlopeSourceYCPU (
Param XParam,
BlockP < T > XBlock,
EvolvingP < T > XEv,
GradientsP < T > XGrad,
FluxP < T > XFlux,
T * zb
)
Updates fluxes with slope source terms for well-balanced solutions in Y direction on CPU (based on kurganov and Petrova 2007).
Template parameters:
T
Data type
Parameters:
XParam
Simulation parametersXBlock
Block parametersXEv
Evolving variablesXGrad
GradientsXFlux
Fluxeszb
Bathymetry array
function AddSlopeSourceYCPU< double >
template __host__ void AddSlopeSourceYCPU< double > (
Param XParam,
BlockP < double > XBlock,
EvolvingP < double > XEv,
GradientsP < double > XGrad,
FluxP < double > XFlux,
double * zb
)
function AddSlopeSourceYCPU< float >
template __host__ void AddSlopeSourceYCPU< float > (
Param XParam,
BlockP < float > XBlock,
EvolvingP < float > XEv,
GradientsP < float > XGrad,
FluxP < float > XFlux,
float * zb
)
function AddSlopeSourceYGPU
CUDA kernel for adding topographic slope source terms in Y direction.
template<class T>
__global__ void AddSlopeSourceYGPU (
Param XParam,
BlockP < T > XBlock,
EvolvingP < T > XEv,
GradientsP < T > XGrad,
FluxP < T > XFlux,
T * zb
)
Updates fluxes with slope source terms for well-balanced solutions in Y direction (based on kurganov and Petrova 2007).
Template parameters:
T
Data type
Parameters:
XParam
Simulation parametersXBlock
Block parametersXEv
Evolving variablesXGrad
GradientsXFlux
Fluxeszb
Bathymetry array
function AddSlopeSourceYGPU< double >
template __global__ void AddSlopeSourceYGPU< double > (
Param XParam,
BlockP < double > XBlock,
EvolvingP < double > XEv,
GradientsP < double > XGrad,
FluxP < double > XFlux,
double * zb
)
function AddSlopeSourceYGPU< float >
template __global__ void AddSlopeSourceYGPU< float > (
Param XParam,
BlockP < float > XBlock,
EvolvingP < float > XEv,
GradientsP < float > XGrad,
FluxP < float > XFlux,
float * zb
)
function KurgSolver
Kurganov-Petrova approximate Riemann solver for fluxes and time step.
template<class T>
__host__ __device__ T KurgSolver (
T g,
T delta,
T epsi,
T CFL,
T cm,
T fm,
T hp,
T hm,
T up,
T um,
T & fh,
T & fu
)
Computes fluxes and time step for the Kurganov scheme given left/right states and velocities (based on kurganov and Petrova 2007).
Template parameters:
T
Data type
Parameters:
g
Gravitydelta
Cell sizeepsi
Small epsilon for stabilityCFL
CFL numbercm
Metric coefficientfm
Flux metrichp
Water depth (plus side)hm
Water depth (minus side)up
Velocity (plus side)um
Velocity (minus side)fh
Output: flux for hfu
Output: flux for u
Returns:
Time step
function updateKurgXATMCPU
Host function for updating X-direction fluxes with atmospheric pressure effects.
template<class T>
__host__ void updateKurgXATMCPU (
Param XParam,
BlockP < T > XBlock,
EvolvingP < T > XEv,
GradientsP < T > XGrad,
FluxP < T > XFlux,
T * dtmax,
T * zb,
T * Patm,
T * dPdx
)
Computes fluxes and time step constraints for each cell in the X direction on CPU, including atmospheric pressure terms (based on kurganov and Petrova 2007).
Template parameters:
T
Data type
Parameters:
XParam
Simulation parametersXBlock
Block parametersXEv
Evolving variablesXGrad
GradientsXFlux
Fluxesdtmax
Maximum time step arrayzb
Bathymetry arrayPatm
Atmospheric pressure arraydPdx
Pressure gradient array
function updateKurgXATMCPU< double >
template __host__ void updateKurgXATMCPU< double > (
Param XParam,
BlockP < double > XBlock,
EvolvingP < double > XEv,
GradientsP < double > XGrad,
FluxP < double > XFlux,
double * dtmax,
double * zb,
double * Patm,
double * dPdx
)
function updateKurgXATMCPU< float >
template __host__ void updateKurgXATMCPU< float > (
Param XParam,
BlockP < float > XBlock,
EvolvingP < float > XEv,
GradientsP < float > XGrad,
FluxP < float > XFlux,
float * dtmax,
float * zb,
float * Patm,
float * dPdx
)
function updateKurgXATMGPU
CUDA kernel for updating X-direction fluxes with atmospheric pressure effects.
template<class T>
__global__ void updateKurgXATMGPU (
Param XParam,
BlockP < T > XBlock,
EvolvingP < T > XEv,
GradientsP < T > XGrad,
FluxP < T > XFlux,
T * dtmax,
T * zb,
T * Patm,
T * dPdx
)
Computes fluxes and time step constraints for each cell in the X direction, including atmospheric pressure terms (based on kurganov and Petrova 2007).
Template parameters:
T
Data type
Parameters:
XParam
Simulation parametersXBlock
Block parametersXEv
Evolving variablesXGrad
GradientsXFlux
Fluxesdtmax
Maximum time step arrayzb
Bathymetry arrayPatm
Atmospheric pressure arraydPdx
Pressure gradient array
function updateKurgXATMGPU< double >
template __global__ void updateKurgXATMGPU< double > (
Param XParam,
BlockP < double > XBlock,
EvolvingP < double > XEv,
GradientsP < double > XGrad,
FluxP < double > XFlux,
double * dtmax,
double * zb,
double * Patm,
double * dPdx
)
function updateKurgXATMGPU< float >
template __global__ void updateKurgXATMGPU< float > (
Param XParam,
BlockP < float > XBlock,
EvolvingP < float > XEv,
GradientsP < float > XGrad,
FluxP < float > XFlux,
float * dtmax,
float * zb,
float * Patm,
float * dPdx
)
function updateKurgXCPU
Host function for updating X-direction fluxes using the Kurganov scheme.
template<class T>
__host__ void updateKurgXCPU (
Param XParam,
BlockP < T > XBlock,
EvolvingP < T > XEv,
GradientsP < T > XGrad,
FluxP < T > XFlux,
T * dtmax,
T * zb
)
Computes fluxes and time step constraints for each cell in the X direction on CPU (based on kurganov and Petrova 2007).
Template parameters:
T
Data type
Parameters:
XParam
Simulation parametersXBlock
Block parametersXEv
Evolving variablesXGrad
GradientsXFlux
Fluxesdtmax
Maximum time step arrayzb
Bathymetry array
function updateKurgXCPU< double >
template __host__ void updateKurgXCPU< double > (
Param XParam,
BlockP < double > XBlock,
EvolvingP < double > XEv,
GradientsP < double > XGrad,
FluxP < double > XFlux,
double * dtmax,
double * zb
)
function updateKurgXCPU< float >
template __host__ void updateKurgXCPU< float > (
Param XParam,
BlockP < float > XBlock,
EvolvingP < float > XEv,
GradientsP < float > XGrad,
FluxP < float > XFlux,
float * dtmax,
float * zb
)
function updateKurgXGPU
CUDA kernel for updating X-direction fluxes using the Kurganov scheme.
template<class T>
__global__ void updateKurgXGPU (
Param XParam,
BlockP < T > XBlock,
EvolvingP < T > XEv,
GradientsP < T > XGrad,
FluxP < T > XFlux,
T * dtmax,
T * zb
)
Computes fluxes and time step constraints for each cell in the X direction (based on kurganov and Petrova 2007).
Template parameters:
T
Data type
Parameters:
XParam
Simulation parametersXBlock
Block parametersXEv
Evolving variablesXGrad
GradientsXFlux
Fluxesdtmax
Maximum time step arrayzb
Bathymetry array
function updateKurgXGPU< double >
template __global__ void updateKurgXGPU< double > (
Param XParam,
BlockP < double > XBlock,
EvolvingP < double > XEv,
GradientsP < double > XGrad,
FluxP < double > XFlux,
double * dtmax,
double * zb
)
function updateKurgXGPU< float >
template __global__ void updateKurgXGPU< float > (
Param XParam,
BlockP < float > XBlock,
EvolvingP < float > XEv,
GradientsP < float > XGrad,
FluxP < float > XFlux,
float * dtmax,
float * zb
)
function updateKurgYATMCPU
Host function for updating Y-direction fluxes with atmospheric pressure effects.
template<class T>
__host__ void updateKurgYATMCPU (
Param XParam,
BlockP < T > XBlock,
EvolvingP < T > XEv,
GradientsP < T > XGrad,
FluxP < T > XFlux,
T * dtmax,
T * zb,
T * Patm,
T * dPdy
)
Computes fluxes and time step constraints for each cell in the Y direction on CPU, including atmospheric pressure terms (based on kurganov and Petrova 2007).
Template parameters:
T
Data type
Parameters:
XParam
Simulation parametersXBlock
Block parametersXEv
Evolving variablesXGrad
GradientsXFlux
Fluxesdtmax
Maximum time step arrayzb
Bathymetry arrayPatm
Atmospheric pressure arraydPdy
Pressure gradient array
function updateKurgYATMCPU< double >
template __host__ void updateKurgYATMCPU< double > (
Param XParam,
BlockP < double > XBlock,
EvolvingP < double > XEv,
GradientsP < double > XGrad,
FluxP < double > XFlux,
double * dtmax,
double * zb,
double * Patm,
double * dPdy
)
function updateKurgYATMCPU< float >
template __host__ void updateKurgYATMCPU< float > (
Param XParam,
BlockP < float > XBlock,
EvolvingP < float > XEv,
GradientsP < float > XGrad,
FluxP < float > XFlux,
float * dtmax,
float * zb,
float * Patm,
float * dPdy
)
function updateKurgYATMGPU
CUDA kernel for updating Y-direction fluxes with atmospheric pressure effects.
template<class T>
__global__ void updateKurgYATMGPU (
Param XParam,
BlockP < T > XBlock,
EvolvingP < T > XEv,
GradientsP < T > XGrad,
FluxP < T > XFlux,
T * dtmax,
T * zb,
T * Patm,
T * dPdy
)
Computes fluxes and time step constraints for each cell in the Y direction, including atmospheric pressure terms (based on kurganov and Petrova 2007).
Template parameters:
T
Data type
Parameters:
XParam
Simulation parametersXBlock
Block parametersXEv
Evolving variablesXGrad
GradientsXFlux
Fluxesdtmax
Maximum time step arrayzb
Bathymetry arrayPatm
Atmospheric pressure arraydPdy
Pressure gradient array
function updateKurgYATMGPU< double >
template __global__ void updateKurgYATMGPU< double > (
Param XParam,
BlockP < double > XBlock,
EvolvingP < double > XEv,
GradientsP < double > XGrad,
FluxP < double > XFlux,
double * dtmax,
double * zb,
double * Patm,
double * dPdy
)
function updateKurgYATMGPU< float >
template __global__ void updateKurgYATMGPU< float > (
Param XParam,
BlockP < float > XBlock,
EvolvingP < float > XEv,
GradientsP < float > XGrad,
FluxP < float > XFlux,
float * dtmax,
float * zb,
float * Patm,
float * dPdy
)
function updateKurgYCPU
Host function for updating Y-direction fluxes using the Kurganov scheme.
template<class T>
__host__ void updateKurgYCPU (
Param XParam,
BlockP < T > XBlock,
EvolvingP < T > XEv,
GradientsP < T > XGrad,
FluxP < T > XFlux,
T * dtmax,
T * zb
)
Computes fluxes and time step constraints for each cell in the Y direction on CPU (based on kurganov and Petrova 2007).
Template parameters:
T
Data type
Parameters:
XParam
Simulation parametersXBlock
Block parametersXEv
Evolving variablesXGrad
GradientsXFlux
Fluxesdtmax
Maximum time step arrayzb
Bathymetry array
function updateKurgYCPU< double >
template __host__ void updateKurgYCPU< double > (
Param XParam,
BlockP < double > XBlock,
EvolvingP < double > XEv,
GradientsP < double > XGrad,
FluxP < double > XFlux,
double * dtmax,
double * zb
)
function updateKurgYCPU< float >
template __host__ void updateKurgYCPU< float > (
Param XParam,
BlockP < float > XBlock,
EvolvingP < float > XEv,
GradientsP < float > XGrad,
FluxP < float > XFlux,
float * dtmax,
float * zb
)
function updateKurgYGPU
CUDA kernel for updating Y-direction fluxes using the Kurganov scheme.
template<class T>
__global__ void updateKurgYGPU (
Param XParam,
BlockP < T > XBlock,
EvolvingP < T > XEv,
GradientsP < T > XGrad,
FluxP < T > XFlux,
T * dtmax,
T * zb
)
Computes fluxes and time step constraints for each cell in the Y direction (based on kurganov and Petrova 2007).
Template parameters:
T
Data type
Parameters:
XParam
Simulation parametersXBlock
Block parametersXEv
Evolving variablesXGrad
GradientsXFlux
Fluxesdtmax
Maximum time step arrayzb
Bathymetry array
function updateKurgYGPU< double >
template __global__ void updateKurgYGPU< double > (
Param XParam,
BlockP < double > XBlock,
EvolvingP < double > XEv,
GradientsP < double > XGrad,
FluxP < double > XFlux,
double * dtmax,
double * zb
)
function updateKurgYGPU< float >
template __global__ void updateKurgYGPU< float > (
Param XParam,
BlockP < float > XBlock,
EvolvingP < float > XEv,
GradientsP < float > XGrad,
FluxP < float > XFlux,
float * dtmax,
float * zb
)
The documentation for this class was generated from the following file src/Kurganov.cu